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Abstract

Brain arteriovenous malformations (bAVMs) represent a high risk of intracranial hemorrhages, which 
are substantial causes of morbidity and mortality of bAVMs, especially in children and young adults.  
Although a variety of factors leading to hemorrhages of bAVMs are investigated extensively, their patho-
genesis is still not well elucidated. The author has reviewed the updated data of genetic aspects of bAVMs, 
especially focusing on clinical and experimental knowledge from hereditary hemorrhagic telangiec-
tasia, which is the representative genetic disease presenting with bAVMs caused by loss-of-function in one 
of the two genes: endoglin and activin receptor-like kinase 1. This knowledge may allow us to infer the 
pathogensis of sporadic bAVMs and in the development of new medical therapies for them. 
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Introduction

Brain arteriovenous malformations (baVMs) consist 
of abnormal tangles of dilated vascular structure 
called nidus, which connects arteries and veins 
directly without intervening capillary beds. They 
are one of the major causes of intracranial hemor-
rhage and/or subarachnoid hemorrhage, which lead 
substantial morbidity and mortality of baVMs, 
especially in children and young adults. Primary 
rationale for treatment of baVMs is to prevent new 
or recurrent hemorrhage. Current treatment modalities 
include surgical removal, endovascular treatment, 
and stereotactic radiosurgery.1) However, it is a 
current controversy that risks of these interventions 
for unruptured baVMs may exceed that of best 
medical management.2) There is no medical treat-
ment available to prevent development or rupture 
of baVMs. although pathogenesis of baVMs is not 
yet well elucidated, genetic mutations and genetic 
risk factors are increasingly identified. appropriate 
animal models of baVMs are prerequisite for under-
standing of the pathogenesis and development of 
new therapies. The author reviewed pathogenesis of 
baVMs using the current updated data, especially 
the new knowledge from clinical cases and animal 
experimental models of hereditary hemorrhagic 
telangiectasia (HHT), which is also known as osler-
Weber-Rendu disease.3–5) Since it is conceivable that 
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baVMs in HHT have similar genetic backgrounds 
to sporadic baVMs, knowledge gained from baVMs 
in HHT may allow us to infer the pathogensis of 
sporadic baVMs and to develop new medical thera-
pies from them. 

Is AVM Congenital or Acquired? 

it is classically believed that baVMs are “congenital” 
lesions, which means that aVMs exist at birth or 
exist as a primordial vascular structure due to 
developmental failure of the embryos in the 40-mm 
to 80-mm length interval (approximately 10–14 
weeks of gestation).6) in this context, baVMs are 
conceived to be “static” lesions. However, there is 
little evidence to support this concept. if most 
baVMs were “congenital,” defined as an existence at 
birth, phenotypic presentation such as hemorrhage 
and/or seizure might occur more frequently among 
younger population. This does not hold true since 
the average age of the initial diagnosis of baVMs 
is about 30–40 years old.7,8) The fact that many 
routinely performed antenatal ultrasound screen-
ings of the fetus fail to detect baVMs also suggests 
that developmental aVM formations are rare except 
for some specific forms of baVMs such as vein of 
Galen aneurysmal malformations and dural sinus 
malformations with arteriovenous (aV) shunts.9,10) 
increasing evidences support postnatal growth of 
baVMs.11) De novo formation, growth, regression, 
recurrence after complete resection, and development 
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after infarction were infrequently reported.12–16) These 
facts indicate a subset of baVMs is “dynamic” lesions 
even in adulthood. This means that baVMs can 
grow, remodel, and regress in addition to rupture. 
in fact, as described below, baVMs do develop in 
adult-onset mice experimental model under certain 
conditions.17,18) 

Sporadic and Familial bAVMs

Most of the baVMs (more than 95%) are sporadic, 
but some have apparently genetic backgrounds. it 
is reported that about 3% of baVMs are caused by 
HHT.19) The HHT and capillary malformation (CM)-
aVM are well-known familial baVMs with known 
causative gene mutations. although most familial 
aVMs are related to HHT, a small number of them 
are related to CM-aVM, which is caused by mutation 
of RASA1 gene.20) Excluding baVMs due to these two 
diseases, familial baVMs are extremely rare.21,22) in 
the latest review of familial baVMs without HHT, 
clinical characteristics of familial baVMs are not 
significantly different from sporadic baVMs except 
for the age at diagnosis. The mean age at diagnosis 
in 53 patients with familial baVMs among 25 fami-
lies was 8 years younger than sporadic baVMs.23) 

Single-nucleotide Polymorphisms (SNPs) 
in bAVMs 

The SNPs are variations of deoxyribonucleic acid 
(DNa) sequence that differ between members of 
the same species. Evidence of SNPs in sporadic 
baVMs has been accumulated (Table 1). Some SNPs 
in the inflammatory cascades and in the regulation 
of angiogenesis play a role in the development of 
hemorrhage of baVMs nonspecifically. identification 

of SNPs related to hemorrhagic risk of baVMs 
or baVM susceptibility enables stratification and 
prognostication of high-risk patients and selection 
of the better management.24,25) apolipoprotein E 
(APOE) genotype may influence the bleeding risk 
of baVMs. aPoE ε2 genotype carriers had five-fold 
increased risk of new hemorrhage than those with 
the other genotypes.26) Similarly, SNPs in inflam-
matory cytokine interleukin-6 (iL-6) (homozygous 
iL-6 −174G>C) are also associated with hemor-
rhagic presentation of baVMs.27,28) Tumor necrosis 
factor (TNF)-α is a pro-inflammatory cytokine and 
TNF-α −238G>a polymorphism is associated with 
increased risk of hemorrhage in the natural course 
of baVMs.29) activin receptor-like kinase 1 (ALK1) 
intervening sequence (iVS) 3 −35a>G polymorphism 
is associated with an increased risk (susceptibility) 
for baVMs.30,31) all these genetic associations to 
hemorrhage and susceptibility of baVM require 
replication in larger samples. Recently, Weinsheimer 
et al. reported genome-wide association study to 
investigate the association of common SNPs with 
risk of sporadic baVM in Caucasians, and found 
that no SNPs including ALK1 iVS3 −3a>G were 
replicated in the large baVM replication cohort, 
suggesting that common SNPs do not contribute 
strongly to baVM susceptibility.32) 

Angiogenesis and Inflammation in 
bAVMs

Molecular and histopathological analysis of baVM 
specimen revealed the higher level of angiogenic 
factors and inflammatory cytokines.28,33) in fact, 
angiopoietin-2, matrix metalloproteinase (MMP)-9, 
vascular endothelial growth factor (VEGF) are highly 
expressed in sporadic baVMs, and concerted effects 

Table 1 Bleeding risk or disease susceptibility of single-nucleotide polymorphisms in sporadic brain arteriovenous 
malformations

SNP authors year Risk/referent genotype oR 95%Ci

Bleeding risk

iL6 −174G>C Pawlikowska et al.27) 2004 GG/CC; CG 2.62 1.38–4.98

TNF-α −238G>a achrol et al.29) 2006 aG/GG 4.01 1.31–12.29

APOE ε2 Pawlikowska et al.26) 2006 ε2/not ε2 4.97 1.43–17.3

Disease susceptibility

ALK1 iVS3 −35a>G
Pawlikowska et al.30) 2005

aa; aG/GG
2.47 1.38–4.44

Simon et al.31) 2006 1.73 1.19–2.51

ALK1: activin receptor-like kinase 1, APOE: apolipoprotein E, Ci: confident interval, iL: interleukin, oR: odds ratio, SNP: 
single-nucleotide polymorphism, TNF: tumor necrosis factor.
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of these angiogenic factors may maintain the angio-
genic phenotype in baVMs.34) Homeobox gene of 
Hox D3 upregulates the expression of several pro-
angiogenic molecules including integrin αVß3 and 
urokinase plasminogen activator and may contribute 
baVM formation.35) inflammatory cells (neutrophils 
and macrophages) are also found in baVMs in the 
tissue removed during microsurgery.33) inflamma-
tory biomarker of iL-6 is increased in baVMs with 
hemorrhagic presentation.36) 

HHT

HHT is an autosomal dominant vascular disorder 
characterized by vascular dysplasia in multiple 
organs leading to hemorrhage, stroke, high-output 
heart failure, and death.37) it has a prevalence of 
1:5,000–8,000.38,39) For HHT, three gene mutations 
are known: endoglin (ENG)40) for HHT1 (online 
Mendelian inheritance in Man (oMiM) #187300), 
activin a receptor type ii-like kinase 1 (ACVRL1) 
or ALK141,42) for HHT2 (oMiM #600376) and SMaD 
family member 4 (SMAD4). Gene mutation of SMAD4 
is responsible for a combined syndrome of HHT 
and juvenile polyposis (oMiM #175050).43) HHT3 
(oMiM #601101) and HHT4 (oMiM #610655) are 
also described,44,45) but their genes are not yet identi-
fied. Recently, it is reported that mutations in bone 
morphogenetic protein 9 can cause similar HHT 
phenotype, thus called HHT5 (oMiM #615506).46) 
Clinical variations in HHT are significant with intra- 
and interfamilial variations in severity of complica-
tions, age of onset, and location of the lesions. it is 
conceivable that sporadic baVMs may have similar 
genetic backgrounds to HHT. in this context, HHT 
is a good clinical and experimental model for the 
investigation of pathogenesis of baVMs. actually, 
there are many experimental studies using HHT 
transgenic animals.

I. Clinical diagnosis of HHT
HHT is caused by gene mutations in transforming 

growth factor-ß superfamily receptors.40,41) ENG is 
the causative gene for HHT type 1, and ALK1 is 
for HHT type 2. about 85–90% of HHTs are either 
HHT type 1 or HHT type 2. Small number of HHT 
is caused by SMAD4 mutation, which is HHT-related 
polyposis syndrome. Clinically, HHT is diagnosed by 
the so-called Curaçao criteria.47) The following four 
items of diagnostic criteria show the characteristics 
of HHT: (1) recurrent, spontaneous nosebleeds; (2) 
mucocutaneous telangiectasia at tongue, lips, face, 
fingertips, etc.; (3) visceral aVMs (including aV 
fistulas) at lungs, brain, liver, and gastrointestinal 

tract (telangiectasia); and (4) family history of HHT 
within the first-degree relatives. When patient has 
more than three items, clinical diagnosis of HHT is 
definite. Two items are regarded as probable. only 
one or no item is regarded as unlikely. Clinico-
genetic correlation, in other words, validation of 
these clinical criteria is very high when adopted 
to the patients above the age of 16 years.48)

II. HHT-related bAVMs: angiographic subtypes
The baVMs in HHT are morphologically classified 

into three groups previously: micro-aVMs less than 
1 cm in size, regular aVMs usually smaller than 
3 cm, and arteriovenous fistulas (aVFs) without 
nidus.49) However, recently different classification is 
proposed: capillary (vascular) malformations, aVMs 
(with nidus), and aVFs.50) Capillary malformations 
have no aV shunts on angiography, but show small 
stains on angiography and “fluffy” enhancement 
on gadolinium-enhanced magnetic resonance (MR) 
images. according to this classification, capillary 
malformations are the most commonly observed 
lesions (61%). aVM with nidus less than 1 cm in 
size (micro-aVM by the previous classification49)) is 
classified as aVM if the lesion has a nidus and aV 
shunts. Hemorrhagic risk of capillary malformations 
might be very low in contrast to that of aVMs and 
aVFs. Further accumulation of data on hemorrhagic 
risk of capillary malformations is necessary to provide 
appropriate therapeutic indication. in general, baVMs 
in HHT have characteristic features of superficial 
location, small size, and multiple lesions. Especially, 
multiplicity is a specific feature of HHT-related 
baVMs.19) However, it is impossible to distinguish 
each HHT-related aVMs from sporadic, non-HHT 
aVMs on the basis of their angioarchitecture.49) 

III. Genetic backgrounds of HHT
The ENG codes for accessory protein receptors 

of the TGF-ß receptor complex and ALK1 encodes 
for transmembrane kinase which participates the 
TGF-ß signaling. They are primarily expressed in 
endothelial cells. ALK1 regulates endothelial prolif-
eration and migration, and ENG promotes ALK1’s 
function in general.51) Loss-of-function mutations 
of these genes leading to “haploinsufficiency” are 
believed to cause HHT. Haploinsufficiency means 
a reduction of protein to half of the normal levels 
due to inactivated one copy of gene leading to an 
abnormal state. However, it is not easy to discrimi-
nate polymorphism (benign rare variants) from 
pathogenic mutations in missense mutations.52)  
When pathogenic proteins are expressed, they could 
also act in dominant-negative fashion, which means 
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dominant mutation acts in opposition to normal gene 
function. Since only normal ENG is expressed on 
the cell surface at the level of 50% in HHT type 1, 
dominant-negative is less likely actually.53) 

IV. Genotype and phenotype correlations of bAVMs 
in HHT 

Prevalence of HHT type 1- and HHT type 2-related 
baVMs is a 1,000- and 100-fold increase, respec-
tively, in comparison to sporadic baVMs28) in general 
population (10/100,000). Gene mutations and their 
phenotypes in HHT have been investigated to disclose 
genotype-phenotype correlations. it is known that 
baVMs and pulmonary aVFs are more prevalent in 
HHT type 1 while hepatic aVMs are more prevalent 
in HHT type 2.54) There were no clear correlations 
between genotypes and phenotypes among 109 HHT 
patients with baVMs (69% ENG mutation, 17% ALK1 
mutation, and 2% SMAD4 mutation) in terms of age 
at diagnosis, multiplicity of aVMs, and prevalence 
of brain hemorrhage, and age at brain hemorrhage 
among gene groups.55) Lack of genotype-phenotype 
correlations in HHT could be attributable to the 
currently accepted pathogenesis of HHT, that is, 
“haploinsufficiency,” which is not related to the 
specific modes or sites of gene mutation.

Animal Models of bAVMs

I. Classic animal models of bAVMs
Historically, animal aVM models are extradural 

aV fistulas and are categorized into two types:56) 
hemodynamic and angiographic models. in hemo-
dynamic models, aV shunts are created surgically 
from the contralateral extracranial carotid artery 
through the circle of Willis to the ipsilateral 
jugular vein, commonly by anastomosing common 
carotid artery to ipsilateral jugular vein (creating 
carotid-jugular fistula) with ligation of the jugular 
vein distally.57) in angiographic models, commonly 
located extracranial “rete mirabile” in artiodactyl 
(even-toed ungulates) is used as aVM-like structures 
by surgically created aV shunts.58) animal models 
for interventional neuroradiologic techniques have 
been used to test various devices and embolic 
materials. These two types of animal models have 
no intracranial parenchymal nidus, main difference 
from baVMs.59)

II. Animal models of HHT-related bAVMs 
Transgenic animal models are used for more modern 

researches on the pathogenesis of baVMs. among 
them, HHT-related transgenic mice are frequently 
used for this purpose. Two types of animal models 
are used: developmental (embryological)42,60) and 

adult-onset models.17,18) Knowledge from the genetic 
pathways in the HHT models can shed light on the 
pathogenesis of sporadic baVMs. Expressivity of both 
ENG and ALK1 mutations is highly variable among 
HHT family members who share the same mutant 
alleles, which indicates that other modifying factors 
might play an important role in disease progression. 
Such factors are examined by animal models of HHT 
type 160) and HHT type 242,61,62) (Table 2). 

Homozygous mutation of ENG-/- is lethal at E10–10.5 
(embryo at day 10–10.5),60) which is roughly equivalent 
to human E24–28. in reality in humans, miscarriage 
occurred at 6–8 weeks of gestation in consanguin-
eous marriage of two HHT type 1 affected first 
cousins when ENG is essential for cardiovascular 
development.63) However, the primitive vasculature 
of the embryo is normal until E9.0 (equivalent to 
human E20). This indicates that ENG plays an 
important role in angiogenic process. on the other 
hand, heterozygous mutation of ENG+/- presents 
similar symptoms of HHT including nosebleed and 
telangiectasia in some mice (not all mice) with 
increasing age, although penetrance is not so high.64) 
This implies that HHT type 1 is caused by a loss 
of function of ENG, i.e., haploinsufficiency. if fact, 
ENG level in ENG+/- mouse was about 50% and 3 of 
10 mice developed vascular abnormalities including 
aVM-like structure.65) Severity and heterogeneity 
of symptomatology might be associated with the 
other epigenetic factors such as environment, blood 
pressure, oxygenation, shear stress, and hormonal 
levels.60) Homozygous mutation of ALK1-/- in mice is 
also lethal at E10.5–11.5, exhibiting severe vascular 
abnormalities. ALK1 in endothelial cells played a 
crucial role in determining vascular endothelial 
properties during angiogenesis.51,62) Mice lacking 
ALK1 developed large aV shunts at the early stage 
of vascular development (E9.5).62)

Heterozygous mice (ENG+/-) without stimuli devel-
oped less often abnormal microvessel formation 
than heterozygous mice (ENG+/-) stimulated by 
VEGF.65,66) ENG+/- mice developed severer cerebro-
vascular dysplasia than ALK1+/- mice stimulated 
by VEGF.67) inflammatory cells are often found in 
and around aVMs. Dysmorphic vessels developed 
in ENG+/- and ALK1+/- mice at the capillary levels, 
but no aV shunts developed. although haploinsuf-
ficiency of ENG or AlLK1 is popularly accepted to 
cause HHT, heterozygous mutation of ENG or AlLK1 
is not enough to cause baVM formation.68) More 
recently, conditional (tissue and/or time-specific) 
knockout mice of ENG or ALK1 gene are used as 
animal models of baVMs. They have more similari-
ties to human baVMs in that they have aV shunts 
and develop spontaneous hemorrhage.17,18) in the 
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experiments using conditional mice with ENG2f/2f 
global cell types and with ENG2f/2f smooth muscle 
cell/endothelial cell types, it is concluded that 
homozygous ENG deletion in endothelial cells as 
well as focal VEGF stimulation might be required for 
baVM development.18) Similarly, deletion of ALK1 
in endothelium alone with focal VEGF stimulation 
induced baVM in adult conditional ALK12f/2f mice.69) 
Thus, it seems that homozygous deletion of either 
ENG or ALK1 in endothelial cells are required for 
baVM formation.18,56,69,70)

Factors Contributing to Pathogenesis  
of bAVMs

it is known that higher levels of angiogenic factors 
and inflammatory cytokines are observed in baVMs 
than in the normal brain tissues.33,36) also, inflamma-
tory cells are infiltrated to baVMs.33) Minor trauma, 

ischemia, venous hypertension, exogeneous growth 
factor delivery, high endogenous angiogenic factors, 
inflammation, and infection are known angiogenic 
factors contributing to manifest baVMs.33,36,66,67)

in HHT, development of aVMs may require a copy 
of inherited mutated gene in particular cells, first. 
and then, a second hit by the focal somatic muta-
tion in another copy of gene may result in aVM 
formation in that lesion,71) as occurred in cerebral 
cavernous malformation and venous malformation 
(“second-hit” model).72–75) alternatively, the second 
hit could be “environmental” in the form of a local-
ized physiological or pathological perturbation.70,75) 
Shedding of ENG from endothelial cells during 
inflammation,70) reduced endothelial ENG signaling 
due to increased soluble ENG level,76) and altered 
blood flow which precipitates a flow-dependent 
adaptive response involving retention of normally 
transient aV connections77) are the examples. 

Table 2 Mouse models of HHT-related brain AVMs

Mutated 
gene authors year

Gene deletion 
hetero/
homozygous

Global/local/
specific cell Conditional Developmental/ 

adult-onset Stimuli

HHT1

ENG Bourdeau  
et al.60) 1999 hetero/

homogygous global developmental

ENG Bourdeau  
et al.64) 2001 heterozygous global developmental

ENG Satomi et al.65) 2003 hetero/
homogygous global developmental

ENG Xu et al.66) 2004 heterozygous global developmental VEGF

ENG Hao et al.67) 2010 heterozygous global developmental VEGF

ENG Choi et al.68) 2012 homozygous local conditional adult-onset VEGF

ENG Choi et al.18) 2014 homozygous

global/smooth 
muscle cell/
endothelial cell/
macrophage

conditional adult-onset VEGF

HHT2

ALK1 oh et al.61) 2000 homozygous global developmental

ALK1 Urness et al.62) 2000 homozygous global developmental

ALK1 Srinivasan  
et al.43) 2003 heterozygous global developmental

ALK1 Hao et al.67) 2010 heterozygous global developmental VEGF

ALK1 Mahmoud  
et al.70) 2010 homozygous global conditional adult-onset VEGF

ALK1 Walker et al.17) 2011 homozygous local conditional adult-onset VEGF

ALK1 Choi et al.68) 2012 homozygous local conditional adult-onset VEGF

ALK1 Chen et al.69) 2014 homozygous endothelial cell conditional adult-onset VEGF

ALK1: activin receptor-like kinase 1, ENG: endoglin, HHT: hereditary hemorrhagic telangiectasia, VEGF: vascular endothelial 
growth factor.
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From insights into these current baVM models, 
it is suggested that both angiogenic stimulation 
(environmental factors) and regional conditional 
homozygous gene deletion (genetic predisposition) 
may promote the ideal baVM development in the 
adult mouse brain.17,78)

Conclusion

although pathogenesis of baVMs is not clearly 
understood, many researches are underway, espe-
cially using HHT animal models. Knowledge from 
such research works may help deeper understanding 
of the pathogenesis and provide novel therapeutic 
approaches to baVMs in the near future.
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